
Recent Advances of Industrial AI 

for Smart and Resilient Industrial Systems

 
Jay Lee 

Clark Distinguished Professor
&

Director of Industrial AI Center 

Univ. of Maryland College Park

leejay@umd.edu

mailto:leejay@umd.edu


2

1. Trends of  Data  Centric Systems and Unmet Needs 

2. Trends of  AI and Industr ia l  AI  Systems

3. Some Examples

4. Tra in ing of New Breed of  Industr ia l  AI Engineers

Outline 



3

1. Trends of  Data  Centric Systems and Unmet Needs 

2. Trends of  AI and Industr ia l  AI  Systems

3. Some Examples

4. Tra in ing of New Breed of  Industr ia l  AI Engineers

Outline 



Trends of Connected Systems and Data Driven Economy

Reference: Tokyo Electron Ltd. (TEL)



Growth of Semiconductor Industry

Growth of 

Semiconductor

Industry 

Reference: Tokyo Electron Ltd. (TEL)



Industr ia l  AI and Data -Centr ic  Metrology for
Highly  Connected and Complex Industr ia l  System 

@ Univ. of  Maryland  

Fleet of 

Jet Engines 

Fleet of 

EVs

Wind Farm

Field 

Equipment

Connected Production 

Machines and Smart 

Manufacturing Systems

Fleet of Rail 

Systems

Advanced Fab.



Visible Invisible

Solve

Avoid

Problem Solving 

Through Continuous

Improvement and 

Standard Work

Utilize New 

Knowledge/

Technologies 

For Value-added

Improvement

Utilize New 

Methods/

Techniques to Solve

The Unknown 

Problems

Value Creation 

using 

Smarter Information

For Unknown 

Knowledge

Jay Lee, Book on  Industrial AI, Springer, 2020

Challenges and Needs of AI in Complex Industrial System



Data and Modeling Issues in Complex Industrial Systems

Source Reference Source

Data Quantity ✓ High Volume

Data Quality ✓ High quality

Data 

Representativeness
✓ Comprehensive

Data Availability ✓ High availability

Reference Source

Data Usefulness

High

Data Usability

Low

Low

High

• Bad Quality

• Broken (Not 
comprehensive)

• Background Missing

• Good Quality

• Broken (Not 
comprehensive)

• Background Missing

• Uncertain Quality

(Drifted or Shifted)
• Comprehensive 
• Background Recorded

• Good Quality

• Comprehensive 
• Background Recorded

Target Source

✓ Low Volume

✓ Dynamic

✓ Time-restricted

✓ Drifted / Shifted

✓ Noisy 

✓ Local 

✓ High variation

✓ Low availability

Target Source



Need Better Data  Representation Methodology

Limited Data Scenario

• Difficult for modeling

• Usually need data augmentation strategy to generate 
more data

• Whole data space is not fully explored 

Temperature

Pressure

Flow 

rate

High Volume Data Scenario 

• High model complexity

• Labeling would be demanding work for user
• Computation expensive

Low Complexity/Quantity High Complexity/Quantity

Traditional DOE 

methods
Sampling 

methods

clustering 

methods

Topological Data 

Analysis

Temperature

Pressure

Flow 

rate



Example: Data  Representation using
Topological Data Analysis  (TDA)  

Data Generation

Initialization

• Preprocessing

• Feature Extraction

• Selected data from nodes of 

graph

Graph 

Construction

Modeling

Evaluation

New 

Representative 

Data

Result

• Develop an adaptive model to 

evaluate the data space

• Design an evaluation strategy 

to decide next representative 
data

• Construct graph by graph-based TDA

Constructed by

only labeled data (170,000)
Node color is represented by

mixture proportion of each class

Ref:https://en.wikipedia.org/wiki/Wafer_testing#/media/File:Wafer_prober_serv
ice_configuration.jpg

TSMC WM-118K Dataset (810,000)

Hsu, Jia, Li, Lee, A  Novel Quality Clustering Methodology on Fab-Wide Wafer Map Images in Semiconductor Manufacturing, 

ASME 2022 17th International Manufacturing Science and Engineering Conference.

Knowledge 

Graph
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AI Has Been Gaining Amazing Attention since 2022

NVIDIA Revenue 

$16.7 B $26.9 B $50 B

Level of Attention

NVIDIA Valuation >$ 3T

Open AI 

GAI



Evolving Role of AI from Algorithm to Platform, and to Agent

Human

DataMachine

AI

AI

Data 

Centers

AI Platform



►Industrial AI

is a systematic discipline 
which focuses on 
developing, validating and 
deploying various machine 
learning algorithms
systemically and rapidly 
for industrial applications 
with sustainable 
performance. 

Industrial AI

Machine 

Learning

Data 

Engineering

Advanced 

Analytics

Industrial AI 
(Methodology,

Tools, and 

Curriculum) 

Prognostics and 

Health 
Management

Semiconductor

Manufacturing

Healthcare/Medical

(ICU, TBI and Pharmacy 4.0+l

Smart & Digital 

Manufacturing

Energy Systems

(Electrification, 
Wind Turbine, 

etc)

Domain

+

Discipline

+

Data



Overview of Industrial AI Systems

Industrial AI Target Systems Traditional 
Machine Learning 

Non-Traditional 
Machine Learning

Methodology 
Platform

1. Manufacturing AI
• Semiconductor
• Machine Tools
• Industrial Robots
• Production Quality

2. New Energy AI
• Wind Turbine
• Power Supplies
• EV Battery
• Oil & Gas

3. Transportation AI
• Automotive
• High-speed Trains
• Aviation
• Marine Vessels

4. Healthcare AI
• Rehabilitation
• Neurocritical Care
• Sports Medicine
• Chronic Care

1. Component 1. Signal Process & 
Feature Extraction

2. Physics-Based 
Model

3. Data-Driven Model

4. Deep Learning

5. Health Assessment

6. Health Diagnosis

7. Predictive 
Maintenance

8. Remaining Useful 
Life

9. Failure Modes and 
Effects Analysis

1.Topological Data 
Analysis 1. Stream-of-

Quality

2. Unit

3. Fleet

2. 5C-level Cyber-
Physical System

3. Digital Twin

2. Domain Adaptation 
& Transfer Learning 

3. Similarity-Based 
Model

4. Surrogate Model

5. Just-in-time Model

6. Industrial Large 
Knowledge Model



Traditional Machine Learning vs. 
Non-Traditional Machine Learning

AI

Machine Learning

Neural Networks

Deep Learning

Generative AI

Traditional 

Machine Learning
Supervised Learning, 

Unsupervised Learning, 

Reinforcement Learning, 

Federated Learning, 

Transfer Learning, Domain Adaptation, 

Similarity-based Learning, 

Stream-based (SoX) Learning,  

Industrial Large 

Knowledge Model, etc. 

Non-Traditional Machine Learning



Tradit ional Machine Learning Methods and Algor ithms 
for  Industr ia l  Systems

Fault Detection

Fault Diagnosis

Health 

Assessment

Remaining 

Useful Life

Prediction

Machine Learning 

Methods 
Algorithms

Binary Classification

Binary/ Multi-class 

Classification

Supervised 

Prediction

Unsupervised 

Prediction

One-Class Detection

Supervised Regression

Unsupervised 

Regression

One-Class Support 

Vector Machine
PCA - 𝑻𝟐

SOM-MQE
GMM-L2

Control Charts

(Statistical Process Control)

Naïve Bayes Support
Naïve Bayes

Support Vector 

Machine
Decision Trees

(Deep) Neural 

Networks

Self-Organizing 

Map

Logistic 

Regression

Fuzzy Inference 

Systems

Linear 

Regression

General 

Linear 

Regression

(Deep) Neural 

Networks

Gaussian Process 

Regression

Parametric 

Method

Hidden Markov 

Model

Factor 

Analysis

Principal 
Component 

Analysis

Kalman Filters / 

Particle Filters

Linear 

Regression

General Linear 

Regression
(Deep) Neural 

Networks

Gaussian Process 

Regression

Kalman Filters / 

Particle Filters

Stochastic Process 

Model

Similarity 

Based Model

Survival / Hazard Analysis 

(Cox Model)

Linear 

Regression

General Linear 

Regression
(Deep) Neural NetworksGaussian Process 

Regression



Zero Downtime Compressor   
at Toyota Georgetown,  KY

AI  for  C ompr essor Surge  P red ic t ion
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Sensors
Surge 

Detection
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Different Ambient 

Air Conditions

Data-Driven 

Surge Modeling

Feature Selection

Surge Models for 

Different Ambient 

Air Conditions

Inlet 

Guide 

Vane

Controller

(Allen Bradley 
S/LC PLC)

Model 

Optimization

Position-to-Flow 

Mapping
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Data Acquisition System
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Data
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Current Limit Low
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SVM

Zero Downtime

No failure 

since 2006

https://www.sme.org/technologies/articles/2021/september/go-for-zero-downtime-performance-by-testing-the-machines-blood/



Embedded AI for Production Systems

Reconfigurable AI Augmented PLC Systems

Enable Zero-Breakdown Productivity



AI-Augmented Uptime Improvement 
for P&G (2007-11)

flechas_circulo-butt3SmRed.gif

flechas_circulo-butt3SmRed.gif

flechas_circulo-butt3SmRed.gif

DM1

DM2

web 1

web 2

Process Quality MonitoringReal-Time Performance 

$450 M 

Saving/Year

2012 NSF I/UCRC 

Economic Impact Report

http://imagenes.recursosgratis.com/gif-animados/showphoto.php?photo=7501&password=&sort=1&cat=598&page=1
http://imagenes.recursosgratis.com/gif-animados/showphoto.php?photo=7501&password=&sort=1&cat=598&page=1
http://imagenes.recursosgratis.com/gif-animados/showphoto.php?photo=7501&password=&sort=1&cat=598&page=1


AI Augmented Machine Tool Health    
Monitoring Technology Demonstrated in 2018

and Commercialized Today

Mazak 

Discovery Week

Oct. 2023  



Non-Traditional Machine Learning—
Transfer Learning

» The  most opt imum way o f learn ing  is  to ut i l i ze the  p re -
acqu i red knowledge as  the  bas is o f in tended learn ing  p lan.

» In m ach ine  lear ning app l ica t ion ,  the exchanging  knowledge  
across d i ffe ren t tasks  is  named  as  t ransfer  learn ing.

» In indust r ia l  app l ica t ions,  p rovid ing  the da ta  under  di f fe r en t  
opera t ing  and heal th cond it ions  is  not  st r aight for war d.  

Operating condition 1

• Temperature
• Load
• Pressure

• Rotating speed
• …

Operating condition 2

• Temperature
• Load
• Pressure

• Rotating speed
• …Data is available Data is not available

Transfer Learning



Domain Adaptation

Data distribution discrepancy

Domain AdaptationSource Classifier

Domain Adaptation is a transfer

learning technique that can be used to

reduce the data distribution

discrepancy between the two domains.

Operating condition 1

Operating condition 2

Source Domain Target Domain



In tegrated Machine Learning for 
Highly  Connected Systems

Domain 1

Domain knowledge: High

H2M

Domain 2

Domain knowledge: Low

H2MDomain 3

Domain knowledge: Low

H2M

M2M

M2M

M2M

H2H

H2H

H2M: human-to-machine communication

M2M: machine-to-machine communication
H2H: human-to-human communication

Knowledge within industrial 

system

Reference

e.g. H2H

Lee, Jay. Industrial AI: Applications with Sustainable 

Performance. Singapore: Springer, 2020.



Tesla Full Self -Driving (FSD) Beta V12 
(released on 8/26/2023) 

• Musk highlighted that FSD V12 relies 

entirely on artificial intelligence and 

neural networks to drive, with no 

traditional code. He stated “there are no 

heuristics, no lines of code” to explicitly 

tell the car how to handle situations like 

traffic lights or turns. Instead, the system 

has been trained on large volumes of 

driving footage to learn proper driving 

behavior.

• Reduced 90% of the code with better 

performance.



Stream of Quality (SoQ ) is a traceable systematic methodology for connected quality. 

• It can collect the manufacturing information of a product during its production processes. 

• The data of each station can be labeled with a time stamp and saved in an immutable block. Then the product 

quality data forms an information stream and can be stored in structured block chain. 

• It can be used to describe the product, trace the entire production process and analyze the root cause of quality 

issues.

𝑿𝟓: Environment

𝒇𝟏

𝑿𝟏: Man

𝑿𝟐:Machine

𝑿𝟑: Material

𝑿𝟒:Method

𝒀𝟏

𝑿𝒊: Process factor

𝒀𝒋: Quality

𝒇𝟐

𝑿𝟏: Man

𝑿𝟐:Machine

𝑿𝟑: Material

𝑿𝟒:Method

𝑿𝟓: Environment

𝒀𝟐

𝒇𝒊+𝟏

𝑿𝟏: Man

𝑿𝟐:Machine

𝑿𝟑: Material

𝑿𝟒:Method

𝑿𝟓: Environment

𝒀𝒊+𝟏

𝒀𝒊 = 𝒇𝒊(𝑿𝟏, 𝑿𝟐, 𝑿𝟑, 𝑿𝟒, 𝑿𝟓, 𝒀𝒊−𝟏)

𝒀 = 𝒈(𝒀𝟏, 𝒀𝟐, … , 𝒀𝒏)

?

(Station 1)        (Station 2)               …               (Station 𝒊)      (Station 𝒊 + 𝟏)

𝑿𝟓: Environment

𝒇𝒊

𝑿𝟏: Man

𝑿𝟐:Machine

𝑿𝟑: Material

𝑿𝟒:Method

𝒀𝒊
Manufacturing process

Non-Tradit ional Machine Learning 

Stream-of-X (SoX)  Methodology

Lee, J., Stream-of-Quality (SoQ) methodology for industrial Internet-based manufacturing system, 

https://www.sciencedirect.com/science/article/abs/pii/S2213846322001912



M1

M1

M1

M2

M2

M3

M3

B1 B2 M4B3

Quality

Check

Quality

Check

Quality

Check

Final Quality 

Inspection
Delivery

Physical 

Manufacturing

Systems

Machine Data

Quality Data Processing 

Parameters
Maintenance 

Record Supplier Data
Order Data

Scheduling
Data to Feature

Data Data Data

Reconfigure & 

Scheduling

Cyber 

Machine

Cyber 

Process

Cyber 

Product

Cyber 

Component

Cyber 

Manufacturing 
Line

Degradation 

assessment
Health Prognosis Correlation Analysis Predict & Root cause tracking

#4 

#3 

#2 

#1 

Stage n-1 

Stage n 

Calculate 

Performance Metric 

based on Quality 

Measurements 

Determine the rout 

cause of quality 

problems in stage n 

Remove the 

samples produced 

by faulty machines 

Initiate Maintenance 

Action for faulty 

machines 

Develop a metric 

based on remaining 

data to evaluate the 

performance of the 

machine in stage n-1 
ü  

Finished  

Ongoing 

… Stage n-2 

Ongoing 

Data Centric 

Manufacturing

Systems

Maintenance 

Order 

Supplier 

Management 

Quality 

Management

Process 

Improvement

Production &

Logistics
ERP

Info Info Info Info

Digital Twin of Manufacturing Systems



Efficiency       30%

Inventory      15%

Labor              92%

Foxconn World Economic Forum (WEF) Lighthouse Factory Award



Domain, Data, and Large Knowledge Model

Data

Problems

Knowledge/

Experiences

Large 

Knowledge 

Model



Industrial  Large Knowledge Model 
for Data-Rich Complex Industrial Systems 

Large Knowledge Model

Simulation
Physical 

Models

Domain 

Experts

Historical

Data





Industrial Generative AI (IGAI) – Industrial Large (Domain) Knowledge Model

https://arxiv.org/pdf/2312.14428.pdf

Jay Lee, A Unified Industrial Large Knowledge Model Framework in Smart Manufacturing, Dec. 2023



Large Language Models (LLMs) vs. Large Knowledge Models (LKMs)

⚫ Large Language Model (LLMs): 

LLMs like ChatGPT, are trained on vast datasets of text. They 

excel in understanding and generating human language, 

making them adept at tasks like natural language processing, 

conversation, and text generation. However, their knowledge 

is often general and not specialized.

⚫ Large Knowledge Model (LKMs): 

LKMs are designed to process and understand large volumes 

of domain-specific knowledge (May have different types of 

data, especially machine sensor data). They are tailored for 

specific industries or applications, incorporating detailed, 

expert-level understanding of particular fields.



LLMs vs. LKMs in Industrial AI

Data Handling 

and Privacy

Potential concerns with data security, as they 

often require sending data to third-party 

servers (Like OpenAI) for processing

Offer greater control over data privacy, as they 

can be hosted within a company’s secure 

environment

Domain-

Specific 

Knowledge

Knowledge is general

may lack deep, industry-specific insights

Specialized

provide in-depth, technical knowledge relevant 

to specific industries

Integration and 

Customization

Need additional resources for integration and 

customization to fit specific industrial 

requirements

Easily tailored and integrated into existing 

systems, aligning closely with industry-specific 

needs

Scalability and 

Maintenance

Highly scalable but necessitates external 

updates and maintenance

Scalability and updates are managed internally, 

offering more control by the company but 

requiring dedicated resources

Real-Time 

Decision 

Making

Limited in handling real-time, complex 

industrial decisions due to their generic 

training

Better suited for real-time decision-making in 

industrial settings, leveraging specific industry 

data

LLMs LKMs
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History of  Our Semiconductor  Research

2000 2003

PdM: Predictive Maintenance

ESC: Electrostatic Chuck
PECVD: Plasma Enhanced Chemical Vapor Deposition 

CMP: Chemical Mechanical Polishing

FDC: Fault Detection & Classification
PVD: Physical Vapor Deposition

2005 2006 2009 2011 20162015 2017 2018 2020 2021-Now



Chamber Di fference Quant if ication 
using Tradit ional PCA

To compare the difference and measure the distance between different machines based on the machine fingerprints (the 

PCs of IE features under different machine offset settings or DG configurations).

Goal:

Steps:

1. Extract statistic features of sensors

2. Conduct sensitivity analysis and select features

3. Perform PCA on selected feature matrix of all 870 
experiments (first 5 PCs are selected)

4. Calculate averaged T^2 and Euclidian distance 

as discrepancy measurement 

5. Visualize PC of different machines 

Result:

Machine 1 (056) is 

compared with 2 

055),3 (055),and 4 

(053)



Data Centric Metrology for  
Semiconductor Manufacturing

Golden 

Process

Golden Machine

Golden Wafer 

Product

A systematic process-data-driven approach which

caliberates the target machine input parameters to

compensate machine responses discrepancy from the

golden machine.

DOE

Data-driven Modeling

Build Models for 

Process

Process 

Monitoring

Sensor 
Readings

OESMachine 

Calibration

Compensate 

Parameter Offset

Golden Machine

Target 
Machine

Different 

Machine

Process 

Discrepancy

Product Yield 

Variation 

• Chamber matching is the common practice to increase production 

consistency and yield by controlling the machine process based on 

feedback from product metrology.

• Machine calibration is the common practice to adjust machines to have 

identical performance by assigning global offsets on machine settings.

• Chamber matching and machine calibration could significantly improve 

production yield of the etching process.

Target Machine

Target 

Process

Target Wafer 

Product



Current NIST Award 

Digital Twin - Enabled Yield Enhancement Methodology for 

Semiconductor Manufacturing by Using Stream-of-Quality Analytics



Normal
Faulty

Critical

Prognostics and Health Management for 

Commercial Jet Engine Fleet

Feature Extraction 

and Signal Processing

Detect variations and 

jumps in parameters 
such as Exhaust Gas 
Temperature (EGT), 

spool rotational speed, 
pressure, etc.

Health Assessment using 

Self Organizing Map (SOM)

•Improved anomaly detection

• Precision classification of 

anomalies

•Earlier fault prediction

Phase I Deliverables

Deliver 

Competitive 

Value to Airlines 

and Customers

Value



Library of Degradat ion Patterns

• Fit an exponential degradation curve for each training unit

• Create a library of degradation patterns/models

41
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Fitted curves of 10 units from the training set

Ref:  NASA PHM Data Challenge, 2008



Simi lari ty  Methodology ( F lee t -Based System)

Move the block of data along 

time; find the most probable 

position with regard to the 

curve of degradation pattern.
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Remaining Useful Life (RUL) Fusion
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AI-Augmented Analytics for ICU



Traumatic Brain Injury (TBI)

Objectives: To determine whether ICP elevations are associated with the presence 

of ischemic changes in the Electroencephalography (EEG) recorded at the cortex 

and on the scalp

Dataset: 104 (Traumatic Brain Injury)TBI patients with ICP and EEG waveform data 

in unsynchronized 120Hz(ICP) and 256Hz(EEG)

Mixture of delta and high theta 

frequencies are seen

attenuation of the faster 

frequencies and enhanced higher 
amplitude delta frequency

Challenges: 

• Pattern changes on EEG along with ICP elevation is observable by Human Expert but 

hard to auto-detect by machine learning model due to high variances and unexpected 

artifact/noises

• The relationship between ischemic changes EEG and ICP elevation is intermittent and 

inconsistent

• Patterns among different patients are different.



AI Centric

Human Centric

Human-AI 

Collaboration

ICP EEG

Signal 

Synchronization

ICP EEG

Artifact removal

SME

SME 

Parameterization

SME Objective 

translation

ICP Elevation 

Segmentation

EEG Feature 

Extraction

SME feedback

Hypertension 

detection model

Tweak

U
p

d
a

ti
n

g
 s

e
g

m
e

n
t

Model 

Deployment 

Decision

Explanation

S
M

E
 e

v
o

lv
in

g

Domain-Augmented Human-AI Integrat ion System



ICP Elevation Segmentation- Human AI interaction UI

Feature extractor output

ICP elevation segments
SME tweaking

SME input

Result visualization



Health Assessment Results 
Summar y of  43 ICU Patients

48

Good Recovery

Moderate Disability

Severe Disability

Persistent vegetative

Death

Death with Withdraw 

of Care

Traumatic 

Time ICU Start Time
Post Trauma 

Time
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U.S. Needs to Lead 

and Excel Industrial AI 

with Speed and Scale.



Current Challenges of AI Talents

1.    Hard to  Find    

2.    Can’t Afford     

3.    Hard to Keep    



All Copyrights Reserved by Foxconn

Level 4     Professional-based Learning

Level 3     Project-Based Learning

Level 2     Practice-based Learning

Level 1     Principle-Based Learning

4P Approach for AI Learning Enterprise 

Ref: Jay Lee, Industrial AI Book, Springer, 2020



All Copyrights Reserved by Foxconn

PHM AP Data Challenge 2023

Takanobu 

MINAMI

9/11-14, 2023

Dynamic Time Warping

Approach



3“Industrial AI” Book

Feb. 2020



Thank You

More Information See

www.iaicenter.com

Contact:  leejay@umd.edu
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