PICMET'14

July 27 - 31, 2014 in Kanazawa, Japan

1

From Observation, Detection to Design of Innovative Research and Technology

Yuya Kajikawa

Graduate School of Innovation Management Tokyo Institute of Technology, JAPAN

Identifying Emerging Research Domains											
1 st layer	2 nd layer			3 rd layer							
Clustername	Clustername	Ages	Nodes	Clustername	Ages	Nodes					
Si	a-Si		2905	Degradation of a-Si	15.33	785					
		8.53		Microcrystalline	4.93	705					
				H dilution effect in a-Si:H	7.27	573					
				TexturedZnO	5.57	432					
	Modeling	21.78	2477	Modeling of recombination	20.37	747					
				Compounds	25.24	584					
				Shottokky	19.10	537					
				Resistance	23.20	359					
	High efficiency	7.05	2196	Tandem-type	9.56	581					
				Band structure	5.82	478					
	c-SI	6.13	2151	Metal-induced crystallization	6.63	481					
				Surface passivation	5.75	475					
				Metal impurities	7.61	409					
				HIT	3.71	231					
			•								

Identif	fying Emer	ging]	Rese	arch Domains		
Organics	Organics	6.46	2023	Double-hetero structure	2.63	679
				phthalocyanine	11.89	552
				Photodiode	5.99	527
				Plastic solar cell	3.00	521
	New materials and processes	2.31	1570	Narrow bandgap	2.05	517
				Liquid process	1.62	423
	Complexes with Nanoparticles	2.49	1263	Nanopartciels/polymer	2.26	427
				Conjugated polymer	2.15	402
				TiO ₂ nanotube/polymer	2.94	322
	Complexes with Nanocarbons	3.56	667	nanotube/polymer	2.33	177
				fullerene/olygomer	3.95	168
				fullerene/ polvfiline	3.44	106
Dye-sensitized	Electrode	2.97	1467	Modeling	4.23	520
				TiO ₂ nanotube	2.27	399
				Nano-structured ZnO	2.08	387
	Electrolyte	3.28	1427	Semi-solid electrolyte	2.73	488
				Solid-electrolyte	4.45	412
				Impedancemeasurement	2.86	374
	Photosensitizer	3.69	1245	Ru-based dyes	4.56	4.88
				Molecular design	2.00	327

Previous Research

Science map

- H. Small, Update on science mapping: Creating large document spaces. Scientometrics, 38 (1997) 275–293.
- K.W. Boyack et al., Domain visualization using VxInsight for science and technology management Journal of the American Society for Information Science and Technology 53 (2002) 764–774.
- C. Chen, Searching for intellectual turning points: progressive knowledge domain visualization. Proceedings of the National Academy of Sciences 101 (2004) 5303–5310

Extraction of research front

- H. Small, Tracking and predicting growth areas in science, Scientometrics 68 (2006) 595-610.
- Y. Kajikawa et al., Tracking emerging technologies in energy research: toward a roadmap for sustainable energy, *Technological Forecasting and Social Change* 75 (2008) 771-782.
- N. Shibata et al., Detecting emerging research fronts based on topological measures in citation networks of scientific publications, *Technovation* 28 (2008) 758-775.
- N. Shibata et al., Comparative study on methods of detecting research fronts using different types of citation, *Journal of the American Society for Information Science and Technology* 60 (2009) 571-580.
- K. Fujita et al., Detecting research fronts using different types of weighted citation networks, Journal of Engineering & Technology Management, in press.

Link prediction

- N. Shibata et al., Topological analysis of citation networks to discover the future core papers, Journal of the American Society for Information Science and Technology 58 (2007) 872-882.
 N. Shibata, Y. Kajikawa, and I. Sakata, Link prediction in citation networks, Journal of the
- American Society for Information Science and Technology 63 (2012) 78-85.

Existing Tools

- Academic Landscape (Kajiawa@Tokyotech, Univ. Tokyo)
- Sci2 Tool (Börner@Indiana U)
- Cite space (Chen@Drexel U)
- Vantage Point (Porter@Gerogia Tech)
- SciVal (Boyack@SciTech Strategy)

SUMMURY

- Citation network analysis is a powerful approach to illustrate science map and therefore has been utilized for R&D planning and science and technology policy. However, observation of research trends based on publications and science map lags behind cutting-edge research front.
- Currently, much effort is devoted to develop methodology to detect emerging research front. In this paper, we develop further and propose an approach to design innovative research and technology and to assess industrial opportunities in addition to traditional observation and detection methods.
- Citation network was used to illustrate science map and to detect emerging research fronts. Then, text analysis was used to measure relatedness between papers and patents and also papers in different research domains to design innovative research and technology.
- Examples in energy technologies and robotics are shown to demonstrate the effectiveness of proposed approach.
- Our results showed that proposed approach to integrate citation network analysis and text analysis can find plausible and promising research target and evaluate industrial opportunity.